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Abstract 

A literature search for sodalite frameworks has 
revealed that, besides tilting, tetrahedron-edge-length 
distortions are an important means of releasing strains 
imposed by geometrical constraints. The extent of 
this distortion rises with the AI content in the series 
of framework composition [All2_, SinO24] (12-")- (0 <- 
n <-12). Violations of  Loewenstein's rule are con- 
nected with large tetrahedron-edge-length distortions. 
Geometrical relationships are given. 

Introduction 

The general formula for members of the sodalite 
family is M8[TI2024]X 2. Tetrahedra TO4 with T =  
Si 4÷, AI 3÷, Be 2+, B3÷,. . .  are connected with each other 
via common O atoms to form what is known as the 
sodalite framework. The centres of the tetrahedra 
occupy thereby the corners of truncated octahedra 
which in turn, being linked by common 4-rings and 
6-rings, form a space-filling arrangement. The T 
cations need not be all of the same kind in a given 
structure. In fact, a sodalite framework with only Si 
has never been found (it would be a hypothetical 

silica modification). Usually, part of the tetravalent 
Si 4+ is replaced by other lower-charged cations (most 
commonly AI 3+) and the framework composition 
becomes, e.g., [A165i6024] 6-. Clearly, this framework 
needs charge compensation to maintain elec- 
troneutrality. This is achieved by balancing the nega- 
tive charges of the framework by a combination of 
cations and anions being situated in the large cavities 
(cages) formed by the framework. Besides charge 
balancing, these cage cations M (typically Na +, K +, 

2+ Ca , . . . )  and cage anions X(CI- ,  SO42-,...) have 
another important function as they prevent the open 
tetrahedra framework from collapsing. They serve as 
a form of  spacer and when they are smaller than the 
size corresponding to a maximal expansion, the 
framework adapts itself to the size of the cage ions. 
Pauling (1930), who determined the structure of the 
natural mineral sodalite, called this volume reduction 
a 'partial collapse'. The mechanism by which the 
framework reduces its cage volume consists of  
cooperative rotations of the TO4 tetrahedra about 
their 4 axes. Fig. 1 of  Taylor (1972) illustrates very 
clearly this tilting or folding of the sodalite 
framework. The degree of tilting is measured by the 
tilt angle ~p. 

0108-7681/84/030185-07501.50 © 1984 International Union of Crystallography 
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The maximal symmetry of a fully expanded sodalite 
framework is lm3m,  that of a partially collapsed 
framework I7~3m. With two kinds of T cations being 
ordered in such a way that they occupy alternately 
the centres of neighbouring tetrahedra, the symmetry 
of the framework is further lowered to P43n. This is 
also the space group of the natural minerals sodalite 
(Pauling, 1930; L6ns & Schulz, 1967) and haiiyne 
(Saalfeld, 1961; L6hn & Schulz, 1968). The Si-AI 
distribution in the latter mineral played a certain role 
in the development of Loewenstein's ideas concerning 
his aluminium avoidance rule (Loewenstein, 1954). 
Henderson & Taylor (1977) proposed the use of the 
name 'sodalite'  in the sense of a structural family and 
the subdivision of this family according to the 
framework composition; thus, sodalites having, e.g., 
a [A168i6024] 6- framework are called aluminosilicate 
sodalites, others with [Al12024] 12- are called alumi- 
nate sodalites. We adopt here this convenient sub- 
division. 

Recently, we have begun a research programme 
aimed at the preparation, crystal growth, and struc- 
tural, crystal-chemical and physical characterization 
of aluminate sodalites with tetrahedral cage anions 
(SO42-, WO 2-, MoO~-, CrO2-). The main reason for 
our interest was the discovery that all of these alumi- 
nate sodalites exhibit displacive phase transitions of 
the ferroic type (Depmeier, 1979) and we expected, 
therefore, that interesting properties might be con- 
nected with the phase transitions. In the course of 
the structure determination of Cas[Al12024](WO4)2 
(Depmeier, 1984) we became aware of the existence 
of important distortions, viz compressions, of the TO4 
tetrahedra. Further observations concerning pub- 
lished data of other members of the sodalite family 
revealed some systematic trends for the distortion. 
Although important works on the geometry of the 
sodalite framework have been published (Taylor & 
Henderson, 1978; Koch & Hellner, 1981; Nyman & 
Hyde, 1981), it seems that the geometrical consider- 
ations have always been restricted to an approxima- 
tion assuming ideal tetrahedra, probably because the 
deviations are small for most of the sodalites studied 
to date. As it is known that the deviations in aluminate 
sodalites are much more important we feel that, 
besides the distortion of the framework (folding), the 
edge-length distortion of the tetrahedra is an essential 
structural feature of the sodalites too. Therefore, we 
have decided to consider, in more detail, the distor- 
tion of the TO4 tetrahedra in sodalite frameworks 
with regard to its causes and effects and also its 
possible application for mapping sodalites. However, 
we will not take into account any bond-length distor- 
tions or any deviation of the distorted tetrahedra from 
tetragonal symmetry, although this is again an 
approximation, since these deviations are small if 
they occur at all. Furthermore, we will only deal with 
cubic sodalites or, if they are not so, with a 

pseudocubic description of the structure (exception: 
tugtupite, see below). 

The geometries of the tetragonally distorted 
tetrahedron and of the sodalite framework 

The more important quantities are explained in Fig. 
1. The following expressions describe the geometry 
of the distorted tetrahedron. 

Of 
d~ = 21 sin - 

2 

d2 = 1(3 +cos Of)l/2 

Of 
h = 2/cos  - 

2 

(1) 

(2) 

(3) 

Of 
cos Of '=-cos  2 - .  (4) 

2 

Its volume is given by 

V.~__I 2 gdlh. (5) 

We consider now a framework consisting of only 
one type of TO4 tetrahedra. In its fully expanded 
state, i.e. ~0 = 0 °, the lattice parameter a is given (cf., 
e.g., Fig. 1 of Taylor & Henderson, 1978) by 

a = 2d~ +2h (6) 

and, according to a theorem concerning the sum of 
angles for a polygon, 

Of + 3/0 = 270 °, (7) 

where yo is the interframework a n g l e / _ ( T - O - T )  for 
= 0% In space group lm3 m, the framework 0 atoms 

are in position 24(h) (x, x, O; x - 0 - 3 5 )  and x can be 

Fig. 1. A 4-ring of the sodalite framework showing schematically 
the quantities used to describe the conformation of the TO4 
tetrahedra and of the framework. T atoms are represented by 
filled circles, O by empty circles. 
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calculated from 

dl 

T cations are in posi t ion 12(d) and the shortest  dis- 
tance between any two of  them is 

a 

u - 2 4 2 "  (9) 

We allow now a partial  collapse of  the framework,  
Le. ~ # 0 °, and the space group becomes ITt3m: 

a ' =  2d~ cos ~p + 2 h  (10) 

o r  

(°  2) a ' =  41 sin ~ cos ~o +cos  . (11) 

Framework  O atoms are now in posit ion 24(g) (x, x, 
z; x - 0.35, z --- 0.05) with 

( ~  ) d, cos~o. __d'sin~° 
- x  - 2a '  ' z -  2a '  (12) 

and it follows that  

~o = t a n  -~ . (13) 

u can be obta ined from (9) and 

u2-212 
- c o s  y -  2l 2 (14) 

or, after substi tut ing and reordering, 

O~ 
- c o s  7 = cos ~o sin a - s i n  2 ~o sin 2 ~ .  (15) 

Correspondingly ,  ~o can be expressed in terms of  a 
and 3': 

sin --y 
cos ~p x/2 2 a = - cot - .  (16) 

a 2 
sin - 

2 

Relations for ideal te t rahedra  can, of  course, be 
obta ined by setting a = 109°28 '. Koch & Hellner 
(1981 ) have shown that  the condit ion for the existence 
of  a sodalite f ramework consisting of  one type of  
undis tor ted te t rahedra  is 

8X2--8Z 2-  1 = O. (17) 

On the other  hand,  because of  equat ions (10) and 
(12), a sodalite consisting of  te t ragonal ly  distorted 
te t rahedra  exists only if 

Z2= (~__ X) 2 20 l 2 

is fulfilled. 

For  ordered sodalites containing two types of  T 
cations with strict a l ternat ion of  larger (pr imed quan- 
tities) and smaller  (unpr imed)  TO4 te t rahedra  the 
following condi t ion exists for the (still cubic) lattice 
parameter :  

a = b =2(d~ cos ~ ' + h ) = 2 ( d ~  cos ~ +h ' ) ,  (19) 

which gives 

~o' ~0 h'. d~ - d~ - 2d~ s i n 2 - f  + 2dl sin2-~= h - (20) 

In practice, d] sin 2 ~o'/2 --- d~ sin z ~o/2 and (20) can be 
given to a fair approximat ion  by its solution for 
~p'= ~, = 0°: 

o r  

d i - h ' = d ~ - h  (21) 

l '2 1 - s i n  a 

12 - 1 - sin a '"  
(22) 

D i s c u s s i o n  

Equat ions  (1)-(18) are exact only for cubic sodalites 
containing one type of  T cation and consisting of  
purely te t ragonal ly  distorted TOa tetrahedra.  These 
condi t ions are rarely perfectly fulfilled in nature.  
However,  as Megaw (1973) pointed out, individual  
variat ions of  in tera tomic distances and angles tend 
to cancel in l inkage structures. Therefore,  these 
equat ions  are also appl icable  to the averaged values 
of  actually existing sodalites, even if they contain 
ordered TO4 te t rahedra  of  different composi t ion or 
if they are not cubic. The agreement  between observed 
and calculated values is generally very good.* For 
anisotropical ly  folded sodalites (Depmeier ,  1983), 
however,  the degree of  disagreement  seems to 
increase with increasing anisotropy.  

Tetragonal  distort ion of  the TO 4 te t rahedra  can 
mean both compress ion or extension, the former 
being the usual case for the sodalites known to date. 
In either case, two of  the six te t rahedron edges, viz 
those designated dr, have lengths different from the 
four named  d2. It is worth noting that the a r rangement  
of  the distorted te t rahedra  in the sodalite f ramework 
is such that  the edges d~ constitute the 4-rings of  the 
framework,  whereas the 6-rings are entirely made  up 
by d2 edges. 

Equat ion  (5) shows that  the distort ion of  a TO4 
t e t rahedron  reduces its volume;  e.g. for a = 120 °, 
which corresponds to a luminate  sodalites, the volume 
reduct ion is about  2 .5%.  In addit ion,  it reduces the 

*A list containing structural information for 17 sodalites has 
been deposited with the British Library Lending Division as 
Supplementary Publication No. SUP38981 (5 pp.). Copies may be 
obtained through The Executive Secretary, International Union of 
Crystallography, 5 Abbey Square, Chester CH1 2HU, England. 
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volume of the unit cell [equation (11)] and also za V = 
Vce,-12 Vtetr, the difference between the volume of 
the unit cell, Vce,, and the volume of the total number 
of tetrahedra per unit cell, 12Vtetr. The ratio Q = 
12 Vtetr/Vce. increases first quite strongly with increas- 
ing a, before it reaches a point of inflection at about 
a = 127 °. It is interesting to note that the lattice para- 
meter a depends more strongly on a change in a than 
on a change in ~ [equation (11)]. 

The conformation of a cubic sodalite framework 
is described by either equation (16) or (18) and it is 
clear that either can be used for conveniently mapping 
sodalites according to their degree of distortion. Such 
a mapping is shown in Fig. 2 which is based on 
equation (18) and is similar to Fig. 4 of Koch & 
Hellner (1981). z is plotted against x and curves of 
constant angles a and ~p are drawn. The aspect of 
the curves indicates that the x coordinates of the 

tz 

0.15 J 

0.10 ~ _  

o.o  

0.25 0.30 0.35 x 

Fig. 2. z v s x  fractional coordinates of the O atoms of sodalite 
frameworks with lines of constant tilt angles ~ and curves of 
constant tetrahedron distortion angle a. Sodalites belonging to 
the series of framework composition [Al12_,SinO24] cl2-"~- (0-< 
n -< 12) are plotted with filled symbols; other framework compo- 
sitions are indicated by open circles. In general, sodalites deviate 
from the existence line of ideal sodalites (a = 109°28% but the 
Al-rich members more than the others. Designations for the 
sodalites (in alphabetical order): BAH: 'barium aluminate 
hydrate' (Ahmed et  al., 1973); B IC: bicchulite (Sahl & Chatterjee, 
1977); BSO: basic sodalite (Hassan & Grundy, 1983); CAW: 
Ca-WO4 aluminate sodalite (Depmeier, 1984); HA: haiJyne 
(L/Shn & Schulz, 1968); HAL: synthetic haiiyne No. 26.2 (L6ns, 
1969); HE: helvite (Holloway et  al., 1972); NAG: basic Na 
aluminogermanate sodalite (Belokoneva et  al., 1982); NO: 
nosean (Schulz, 1970); NOL: synthetic nosean (L/Sns, 1969); 
SACr: Sr-CrO4 aluminate sodalite (Setter et  al., unpublished); 
SAW" Sr-WO4 aluminate sodalite (Depmeier, to be published); 
SO: sodalite (L6ns & Schulz, 1967); TMA: tetramethylam- 
monium sodalite (Baerlocher & Meier, 1969); TU: alI-Si 4-ring 
of tugtupite (Dan0, 1966); TU': Si/A1/Be 4-ring of tugtupite 
(Dan0, 1966); ZBO: zinc metaborate (Smith-Verdier & Garcia- 
Blanco, 1980). 

framework O atoms depend mainly on the degree of 
the tetrahedron distortion, whereas the z coordinates 
are virtually insensitive to this distortion, but change 
rapidly as the tilt angle ¢ changes. 

All filled symbols in Fig. 2 represent sodalites 
belonging to the series of aluminosilicate sodalites 
with framework composition [Al12_,Sin024](12-'O-; 
empty circles correspond to sodalites having different 
compositions. End members of the series are on one 
side ( n = 0 )  the aluminate sodalites Ca8[Al12024]- 
(WO4) 2 (CAW; Depmeier, 1984), Sr8[Ali2024](WO4)2 
(SAW; Depmeier, to be published), Sr8[AIt2024 ]- 
(CRO4)2 (SACr; Setter & Depmeier, unpublished) and 
'barium aluminate hydrate '  (BAH; Ahmed, Dent 
Glasser & King, 1973) which are characterized by the 
smallest values of x of the whole series, z and ~ are, 
in general, also small. On the other side of the series 
( n =  12) we have chosen the 4-ring of tugtupite 
{Na8[A12Be2Si8024](C1, S)2; Dan0 1966} which con- 
sists entirely of SiO4 tetrahedra. The data point is 
labelled TU. This 4-ring is regarded as representing 
to some extent a hypothetical SiO2 modification crys- 
tallizing in a sodalite-like framework. The value of x 
is the highest in the whole series. The second type of 
4-ring in tugtupite is a mixed one consisting of two 
SiO4, o n e  AIO4 and o n e  BeO4 tetrahedra; it is marked 
TU', but will not be further considered here. 

A 1:1 Si/A1 ratio (n = 6) corresponds to the well 
known natural aluminosilicate sodalites, viz ha/iyne 
(HA; L/Shn & Schulz, 1968), nosean (NO, Schulz, 
1970; NOL, L/Sns, 1969) and sodalite (SO; L/Sns & 
Schulz, 1967) in the proper sense. The recently deter- 
mined basic sodalite (BSO; Hassan & Grundy, 1983) 
has also been included. The values of x and a of this 
group are intermediate between the extreme values 
of the end members; z and ~ are moderately high. 

Only one Si-rich sodalite (S i /AI=5.0)  has been 
reported, viz tetramethylammonium sodalite (TMA; 
Baerlocher & Meier, 1969). Unfortunately, this 
material could be obtained only in the form of very 
tiny crystals and, therefore, the structure had to be 
determined from powder data. Furthermore, the 
space group used in the refinement was only approxi- 
mately correct. Therefore, the results do not have the 
same level of significance as the single-crystal results 
of the other sodalites. In addition, there are no cage 
anions in the structure, which sets TMA somewhat 
apart from the other sodalites. Despite its par- 
ticularities we have included TMA in our list as a 
representative of otherwise unknown Si-rich sodalite 
frameworks. Two aluminosilicate sodalites have an 
Si/AI ratio <1.0. Bicchulite (BIC; Sahl & Chatterjee, 
1977) has an Si/AI ratio of exactly 0-5, whereas L/Sns 
(1969) studied an artificial ha/iyne (HAL) for which 
he estimated a ratio of 0.4. For both types, Si- or 
Al-rich sodalites, the values of x and a fall between 
the intermediate 1 : 1 sodalites and the corresponding 
end members. 
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These results indicate clearly that the degree of 
tetrahedron distortion (measured by a)  is correlated 
with the framework composition. This is demon- 
strated in Fig. 3 where angles ~ (averaged a for each 
structure) are plotted against l - 1 . 3 5  for the series 
of aluminosilicate sodalites, f is the average bond 
length of the corresponding sodalite, 1.35 ~k the effec- 
tive ionic radius of 0 2- for coordination number 
(CN) II (Shannon & Prewitt, 1969) and f - 1 . 3 5  is, 
thus, the average T cation radius. The linear- 
regression line drawn has a correlation coefficient of 
0-965. The conspicuous linear relationship between 
o~ and the average cation radius is interesting and 
needs an explanation. 

Equation (7) shows that a sodalite framework con- 
sisting of ideal tetrahedra and being in its fully expan- 
ded state would have an a n g l e / ( T - O - T )  of 160.5 °. 
This value is unfavourable because in silicate linkage 
structures the preferred angle is about 145 ° (Megaw, 
1973). Therefore, a strain is created and two 
possibilities exist for the structure to reduce this angle 
and, thereby, to release the strain, viz (i) by increasing 
the tilt angle ~o or, (ii) by increasing the angle a. The 
first is the favourite mechanism for the Si-rich side 
of the series, whereas the second prevails for Al-rich 
members. The tilt angle ~o is mainly determined by 
the cage content, whereas a depends on the 
framework composition, or, to be more precise, on 
the A1 content. 

Clearly, the strain in the 4-rings of the sodalite 
framework is higher than in the 6-rings and, con- 
sequently, the gain in energy is higher if the strain is 
reduced here. That is why for sodalites usually a 
simultaneous opening of a and narrowing of 3'o 
occurs in the 4-rings. The amount of opening of a is 
limited by O.. .O repulsions in the 6-rings. This is 
demonstrated by the nearly constant d2 values within 
a group of given framework composition. Hence, the 
longer AI-O bonds allow smaller a '  angles and larger 
a angles than the shorter Si-O bonds. The observed 
slight increase of d2 with increasing A1 content can 
be attributed to the higher ionic character of the A1-O 

[o]- 

120 - 

110 

oSAW 
eS r 

" AH 

~ 'H£SO 

~ -  TU 

100 0.20 0.2'5 0.:30 0.35 0.40 [- 1.§5 [/~] 

Fig. 3. The tetrahedron distortion angle a v s  the observed bond 
length T-O minus the effective ionic radius of O for the sodalites 
of the aluminosilicate series. The correlation coefficient of the 
linear-regression line is 0-965. Designations are explained in the 
legend of Fig. 2. 

bond as compared with the more covalent Si-O bond. 
The increased ionic character leads, together with the 
increasing negative charge of the framework, to 
increased repulsion of the framework O atoms and, 
thus, to a longer equilibrium distance. 

The higher ionic character of the A1-O bonds as 
compared with the Si-O bonds also has the con- 
sequence that the angle /_(O-AI-O) is more easily 
deformable than/_(O-Si-O).  This makes it just feas- 
ible that the Al-rich sodalites can profit from 
the possibility of strain reduction by increasing 
a, as offered by the long T-O distance. This is 
clearly demonstrated by the aluminogermanate 
sodalite NAG {Nas[A16Ge6OE4](OH)2; Belokoneva, 
Dem'yanets, Uvarova & Belov, 1982}. With respect 
to size, Ge is comparable with A1, but its electronega- 
tivity is equal to that of Si. The more covalent charac- 
ter of the Ge-O bond prevails and the value of a for 
NAG is comparable with those of l : l  aluminosili- 
cates and not with aluminate sodalites, as one would 
assume taking into account the ionic radii only. 

This leads to the argument that Si-rich members of 
the aluminosilicate series have only a small possibility 
of reducing strain by opening a ;  they must rather 
change ~o in order to obtain favourable ~/values. They 
have, therefore, generally higher values of ~0 than 
Al-rich members. Higher values of ~o mean smaller 
cage ions and vice versa. Therefore, it seems plausible 
to assume that Si-rich sodalites containing cage ions 
whose sizes would imply very low or even zero values 
of ~o are unlikely to exist. This argument is supported 
by an observation of Henderson & Taylor (1978). For 
aluminosilicate sodalites containing large anions like 
SO~- or I-, they observed kinks in the thermal- 
expansion curve, separating two temperature ranges 
of high and low thermal expansion, respectively. They 
proposed two possible causes, viz either the 
framework had reached its fully expanded state or 
the cage cations had reached the position ~, ¼, They 
favoured the second explanation. We propose a third 
possibility, viz that a certain lower limit of % ~0min, 
exists which depends only on the framework compo- 
sition and which increases as the Si content increases. 
This lower limit of ~o is thought to be given by the 
requirements of y to have a maximal value, ~'max, of 
about 150 ° . Equation (16) gives the relation between 
a, ~o and y and it is shown graphically in Fig. 4 with 
~o as a function of a and with ~/ as a parameter. 
Curves of constant 3, are plotted and the data points 
for the different sodalites are shown with the same 
symbols as in Fig. 2. In fact, we observe that all 
sodalites (with the exception of TMA, whose par- 
ticularities have been mentioned) plot on one side of 
a limiting zone (hatched) which is regarded as rep- 
resenting )'max and ~Omin--f(Si/Al). ~0mi n increases with 
the Si content of the groups of aluminosilicate 
sodalites. These groups are indicated by their Si/Al 
ratio at the top of the vertical lines which give the 
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average values of a for all members of the respective 
group. 

The sodalites which are not part of the aluminosili- 
cate series can be explained using the same arguments 
as above. Nas[A16Ge6OE4](OH)2 (NAG; Belokoneva, 
Dem'yanets, Uvarova & Belov, 1982) and helvite (HE; 
Holloway, Giordano & Peacor, 1972) are very similar 
to l : l  aluminosilicates, only in NAG Ge takes the 
role of Si and Be takes that of A1 in HE. The B-O 
bond in Zn8[B12024]O 2 (ZBO; Smith-Verdier & Gar- 
cia-Blanco, 1980) is even more covalent than the Si-O 
bond and a deformation of the tetrahedron angle is, 
therefore, even less probable. 

A seemingly paradoxical behaviour has to be men- 
tioned. Whereas for the average TO4 tetrahedron in 
the series [Al12_,Si,O24] ~!2-")- the values describing 
the distortion (e.g. c~) rise monotonically as n 
decreases, we find for individual TO4 tetrahedra in 
ordered (1 : 1) aluminosilicate sodalites that the AIO4 
tetrahedron is always more regular than the SiO4 
tetrahedron. This concerns the species haiiyne (L6hn 
& Schulz, 1968), nosean (L/Sns, 1969), sodalite (L/Sns 
& Schulz, 1967) and basic sodalite (Hassan & Grundy, 
1983). The straightforward explanation results from 
equation (22), because it indicates an inverse relation- 
ship between l' and a '  (l and a) for a '  and a > 90 °. 
The fact that the AIO4 tetrahedron can adopt high 
values of a in aluminate sodalites as well as small 
values in ordered aluminosilicate sodalites proves 
again the more ionic character of the A1-O bond. The 
conformation of the aluminosilicate sodalites is thus 
mainly determined by the SiOa tetrahedra, whereas 
the A104 tetrahedra adapt themselves to the given 
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Fig. 4. The tilt angle ~p os the tetrahedron distortion angle a with 
curves of constant y. Sodalites are plotted with the same point 
symbols and designations as in Fig. 2. Members of the 
aluminosilicate series are grouped together corresponding to 
their Si/AI ratio. This is given at the top of the vertical lines, 
which correspond to the average a values of that group. With 
the exception of TMA, all sodalites plot on one side of a hatched 
zone which is regarded as representing minimal values of ¢. This 
is a function of the framework composition (or a) and is thought 
to be determined by a constant maximal value of y. 

situation. For helvite (Holloway, Giordano & Peacor, 
1972) and Nas[A16Ge6024](OH)2 (Belokoneva, 
Dem'yanets, Uvarova & Belov, 1982), which are also 
ordered sodalites, the differences in the radii of the 
two T cations are so small that the distortions of the 
two tetrahedra are not significantly different [cf. 
equation (22)]. 

The fact that the tetrahedron distortion in sodalites 
increases with the A1 content has a parallel in at least 
two more all-A1 analogues of aluminosilicate struc- 
tures. The first is that of alkaline-earth aluminates 
with the stuffed tridymite structure (e.g. CaAl204; 
H6rkner & M/iller-Buschbaum, 1976); the second is 
pentacalcium trialuminate (Vincent & Jeffery, 1978) 
which is similar to gehlenite (Louisnathan, 1970). 
Both contain all-corner Al-connected A104 tetrahedra 
(the latter only one type out of four) and in both cases 
the tetrahedron distortion (which is no longer 
tetragonal, however) is significantly larger in the case 
of the A1 analogues. Furthermore, the tetrahedra of 
the A16OI8 rings in the structures of Cas.sNaA16OI8 
(Nishi & Tak6uchi, 1975) and of Ca3A1206 (Mondal 
& Jeffery, 1975) show distortion parameters which 
are comparable to those of aluminate sodalites. In 
all these cases Si/AI < 1.0 and, consequently, at least 
some, if not all, A104 tetrahedra are connected with 
other A104 tetrahedra. They represent, therefore, 
examples of violations of Loewenstein's (1954) 
aluminium avoidance rule. The examples shown sug- 
gest that this rule should be completed by the state- 
ment that, if a structure cannot avoid to link A104 
tetrahedra with each other, it tends to reduce the 
imposed structural strain by increasing the edge- 
length distortion of the A104 tetrahedra. 

Other examples of the relation between framework 
composition and tetrahedron distortion are under 
study. 

It is a great pleasure to thank the referee for his 
constructive criticism, Dr B. Howes for reading the 
manuscript and Mr R. Cros for the drawings. The 
work has been supported by the Swiss National 
Science Foundation under contract number 2.409- 
0.82. 

Note  added in proof: When this paper was in the press 
we were informed of another study which, almost 
simultaneously, dealt with a similar topic (Hassan & 
Grundy, 1984). It seems that the geometrical model 
proposed in that paper could advantageously be com- 
pleted by our considerations. This would concern 
particularly the sodalites having a framework compo- 
sition different from the 1 : 1 aluminosilicates. 
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Abstract 

The two solid solutions 3 ' -Zn2Co(PO4)2 and 3'- 
(Zn0.s0Co0.s0)3(PO4) 2 have been prepared and equili- 
brated at 1070 K. The structures (P21/n, Z = 2 )  are 
isomorphous with '3 ' -Zn3(PO4)2 '  and with the mineral 
farringtonite, (Mg, Fe, Mn, Ca)3(PO4)2, with Mr = 
379.61, a=7.536(1) ,  b=8.413(1),  c=5-049(1)A,  
f l=94.74(1)  °, V = 3 1 9 . 0 ( 1 ) ~  3, D x = 3 - 9 5 2 M g m  -3, 
and Mr=376"40, a=7.545(2) ,  b=8.406(2) ,  c=  
5.054(2)~,  f l=94.56(2)  °, V= 319.4 (2) A 3, Dx= 
3 .914Mgm -3, respectively. The crystal structures 
have been refined on the basis of neutron powder 
diffraction data (A = 1.55 A, T = 295 K) with the Riet- 
veld full-profile refinement technique, to Rp = 0-078 
and 0-066 (R~ = 0.052 and 0.036). The metal cations 
are strongly ordered, with Zn 2+ dominating at the 
five- and Co 2+ at the six-coordinated sites; 
Ko(Zn, Co)-'-9. The MO5 polyhedra are distorted 
trigonal bipyramids, while the M O  6 octahedra are 
almost regular. Some thermodynamical calculations 
are included. The JCPDS Diffraction File No. for 
3 ' -Zn2Co(PO4)2  is 34-1491.  

0108-7681 /84/030191-04501.50 

Introduction 

As part of a project concerning the crystal chemistry 
of metal phosphates (cf. Nord & Kierkegaard, 1980), 
investigations with the aim of determining cation 
distributions between five- and six-coordinated sites 
have been undertaken. Many suitable reference struc- 
tures are found among divalent-metal phosphate 
minerals, such as the farringtonite, (Mg, Fe, Mn, 
Ca)3(PO4)2,  structure, isomorphous with '3'- 
Zn3(PO4)2 '  (Calvo, 1963), and the graftonite, (Fe, Mn, 
Ca)3(PO4)2,  structure (Calvo, 1968; Kostiner & Rea, 
1974). 

Numerous farringtonite-type 3"-(Znl-zMz)3(P04)2 
solid solutions may be prepared (Sarver, Katnack & 
Hummel, 1959; Brown & Hummel, 1963; Nord & 
Stefanidis, 1981), and some cation distribution studies 
have now been completed constituting the first sys- 
tematic study of partitioning among five- and six- 
coordinated sites for M 2+ ions. Various techniques 
have been used, such as X-ray diffraction (e.g. Nord, 
1977), 57Fe MiSssbauer spectroscopy (Annersten, 
Ericsson & Nord, 1980), or Rietveld (1969) refinements 
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